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We make a comparison of the performances of various three-dimensional reconstruction 
,algorithms for situations where only few conic projections of a vascular tree are available. 
This problem is ill-posed and prior information must therefore be used to regularize the 
solution. We restrict ourselves to methods that are able to handle the sparseness and the 
non-negativity that caracterize a iodinated vascular structure: the Extreme Value Technique 
and related methods, and the Algebraic Reconstruction Technique. The results we obtained led 
us to derive a new method based on a two steps detection-estimation scheme. 

1. INTRODUCIYION 

Reconstructing a three-dimensional (3-D) object from a set of its 2-D conic projections is 
an inverse problem which cannot be considered as an elementary extension of what is commonly 
done today in 2-D standard CT. The 3-D problem arises specific theoretical and computational 
difficulties. The inversion of the analytical relationship between a 3-D function and its 
divergent beam X-ray transforml, either directly or through a transform (3-D Fourier 
transform, 3-D Radon transform), requires conditions on the trajectory of the source. But the 
sufficient conditions given in ,litterature2r3t4 are unrealistic in the case of medical 
applications. For example, the Tuy’s condition, which is the less restrictive, states that 
any plane that intersects the object to be reconstructed, assumed to have a finite support, 
must intersect the source trajectory. When these conditions cannot be verified for some 
practical reasons, the problem usually amounts to reconstructing with views in a limited 
angle. Since the Fourier’s or Radon’s domain are then not totally filled, the reconstruction 
problem becomes an ill-posed one. This characteristic is amplified by the truncation of the 
2-D views which is unavoidable in medical imaging, at least in the direction of the body 
axis, and by the smallness of the number of views one may dispose of in some applications. 

It is well known that solving such an ill-posed problem requires its regularization, i.e. 
the explicit introduction of a priori information on the solution in order to stabilize it. 
But the reconstruction methods which are based on direct inversion schemes, either exact or 
approximated3~4~5~6r7, do not allow one to take into account a large variety of prior 
information. This explains why these direct methods fail when projections either lie in a 
limited angle, or are truncated. As these constraining conditions are intrinsic to the 
medical applications we are interested in, we shall focus here on 3-D reconstruction methods 
that rely on estimation schemes because they allow an easy introduction of prior information, 
and thus enable one to regularize the problem. But the counterpart of this flexibility is the 
computational load which may become excessive in a 3-D environment. Some properties of the 
object may however be used to easily derive “fast” algorithms and reduce the computations. 

The necessity of introducing prior information on the solution implies that regularizing 
methods are suited to the only class of problems which correspond to the information that is 
used. Moreover the efficiency of these methods increases when prior information increase. 
Thus we restrict ourselves here to the reconstruction of a vascular tree which has been 
opacified by injection of a contrast medium. We assume that only few tens of conic 
projections are available, each projection being obtained by logarithmic substraction of 
images measured before and after injection of the contrast medium. The prior informations 
about this class of objects are positivity, sparseness, high contrast and connectivity. 
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Different methods have been proposed in the litterature to reconstruct a vascular tree. 
Besides approaches based on stereo-vision techniques, a first class of methods use 
assumptions on the object geometry to develop models with few parameters, and then derive 
fast estimation algorithms*. But these parametric approaches usually suffer from a high 
sensitivity to the exactness of the assumptions used for modelling. This can be redhibitory 
when actual objects , such as physiological ones, offer a geometry too complex and variable to 
be easily modelled with few parameters. A second class of methods relies fundamentally on the 
vascular trees sparsenessgflO. The computational burden is then reduced by the crudeness of 
the estimation procedure. But the counterpart is a poor robustness to noise. 

In this paper, we shall therefore focus on non parametric regularizing methods for 
reconstructing a 3-D vascular tree from few conic projections. We shall compare first the 
performances of existing methods: the Extreme Value Technique (EVT)g and related methodslO on 
one hand, and the Algebraic Reconstruction Technique (ART)ll on the other hand. The analysis 
of their advantages and drawbacks will lead us next to derive a reconstruction method based 
on a detection-estimation scheme. The detection step, based on a statistical analysis in the 
projections, allows one to define a region of support of the object, and thus to reduce the 
computational load of the estimation step. Finally, simulation results are given. 

2.COMPARISON B-EXISTINGmODS 

We make here a comparison of existing methods which are potentially able to reconstruct a 
3-D vascular tree when only few tens of its conic projections are available. Let us introduce 
first some notations. We assume that the object of interest is sampled on a regular Cartesian 
mesh, and let f(v) be the value of the voxel localized in the object coordinates system by 
the three-components vector v. The voxels values are lexicographically concatenated into the 
vector f. Let gi(p) be the projection value in the ith conic projection, i=l,...,N, of the 
pixel at location defined by the two-components vector p, concatenated into the vector gi. A 
projection gi is related to the object f through the X-ray conic projection operator Hi: 

gi =H,f . 

The location in the ith projection plane of the conic projection ray that goes through the 
voxel localized by v will be denoted by pi(v) and referenced as its geometrical projection. 
The difficulties introduced by the quantization steps in the projection planes are assumed to 
be solved by an appropriate interpolating schemel*. 

2.1 The Extreme Value Technique 

The Extreme Value Technique (EVT)g~lo was initially developed for tomosynthesis but its 
principle can be easily extended to the 3-D CT. EVT assumes that the object of interest is 
sparse and that, for any voxel which does not belong to the object (“empty” voxel), there 
exists at least one projection such that the corresponding ray passing through this voxel 
intersects only empty voxels. Considering the substraction projection images of a vascular 
tree with a positive iodine contrast, this assumption can be considered as verified if N is 
large enough. EVT makes an explicit use of it by assigning to f(v) the minimum value of all 
the projections that pass through it: 

f(v) = Min {g,(p,(v)), i=l,..., N} . (2.2) 

It is obvious that EVT requires very few computations, but it is very sensitive to noise on 
the projections, and it misestimates the linear attenuation coefficient since the back: 
projected value corresponds to an integral through the object. This is a serious drawback 
since an object with an uniform attenuation is reconstructed with a non uniform one; any 
post-treatement based on a quantitative usage of the attenuation is therefore prohibited. 
These shortcomings will be put into light by the results presented in Section 4. 
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2.2 The iterative Extreme Value Techniaue 

An iterative method has been derived from EVT by KrugerlO to reduce the effects of noise. 
The basic idea is to realize a tradeoff between backprojection and EVT by defining: 

g, (pi (V)) = Min {g~-‘(Pi (V)> 1 fkml (VII 

fk(v> = (l/N) i=l,.C.,N g:(Pi(v)) 

(2.3) 

(2.4) 

where k is the iteration number. This procedure converges to the EVT solution when k + 0~ but 
no stopping rule can be easily given. It is fruitfulllO to replace quantities in the 
righthand term in (2.3) by their absolute values since the noise, and therefore gi(p), may 
have negative values in DSA images. If the stability of (2.3-4) is improved with respect to 
(2.2), the remark about the misestimation of the attenuation still stands. 

2.3 The iterative threshold Ektreme Value Techniaue 

An other modification of the basic EVT has been proposed in lo in order to improve its 
efficiency when projections are noisy. The projection updating equation (2.3) is replaced by: 

i 

0 
gt(Pi(v)) = 

if gl-l(pi(v)).fk-l(v) < 0 
(2.5) 

Min {gl-l(pi(v)), fk-l(v)} otherwise 

since negative value for gi(p) are expected in the background where noise only is present. 

2.4 The Algebraic Reconstruction Technique 

This well known reconstruction methodll is based on a totally different approach. It 
stands on the Kaczmarz’s method which iteratively computes the generalized inverse of a 
system of linear equations. Although this solution is unstable when the problem is ill-posed, 
regularization is obtained by stopping the iterations according to a given rule and by 
introducing prior information on the solution13. The ART is described by: 

fk = Cfk-l + Ak HI< / IHi/* (2.6) 

$ = gi - Hifk-' 

where C is a constraint operator describing prior information such as non-negativity: 

0 if f(v) < 0 
Cf(v) = (2.8) 

f(v) otherwise . 

ART involves heavy computations at each recursion, specially to compute the residual si and 
to backproject it using an adequate interpolation scheme, and several iterations are required 
to achieve a satisfactory solution. Moreover, the sparseness assumption cannot be directly 
handled with the constraint formulation (2.8) since it would need to know accurately the 
object geometry before reconstructing. The detection step presented in the next section has 
been developed for this purpose. 

2.5 Comparison 

The performances of the above methods can be evaluated through the litterature results 
and, as far as our application is more specifically concerned, through our results that are 
grouped in Section 4 for clarity. The EVT and related methods offer a great computional 
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simplicity but their suffer from a poor robustness with respect to noise and to the validity 
of the sparseness assumption. Moreover, the misestimation of the voxel value represents a 
severe drawback. On the contrary, ART offers a good robustness with respect to the noise and 
the geometry of the projections (number, angle...), and it reconstructs an object whose X-ray 
projections are consistent with the available measurements. But this is achieved at the 
expense of a high computational burden. Considering that only few percents of the voxels 
belong to the object, the restriction of the estimation to these only voxels could provide 
great computation savings. We shall therefore develop now a detection method to determine the 
region of support of the object and thus to take benefit of both previous approaches. 

3. DERIVATUIN OF A DJCTECCION METHOD 

The goal of the detection step is the elimination of parts of the volume to be 
reconstructed where no object of interest is present. In this Section, we first introduce a 
detection method which is simply derived from the EVT, and then we present a more general 
framework based on statistical hypothesis testing, from which it is possible to derive 
various more sophisticated detection schemes. 

3.1 A detection scheme based on Extreme Value 

As mentioned before, the performance of EVT is very much degraded in the presence of 
noise. Nevertheless, the information provided may be useful1 regarding the region of support 
of the object. Specifically, let us consider an empty voxel v, i.e. a voxel such that f(v)=O, 
and assume that there exists some views, with indices ielI( whose corresponding projection 
ray intersects only empty voxels. Then we note that the measured values gi(pi(v)), which we 
shall denote simply by g,, for iel’I(v), correspond to independent realizations of noise only. 
Thus, the probability that one of them is lower than the noise mean value is close to 1 if 
the number of indices in II(v), denoted by n(v), is large enough. On the other hand, when the 
voxel v does belong to the object, i.e. has a non-negative value f(v), each of the gi, 
i=l ,...,N contains a non-negative term to which noise is added; thus the same probability is 
small in this case. Therefore, we define a decision rule as follows: 

v is not empty o Min {gi , i=l, . . . ,N} > m. , (3.1) 

where m. is the noise ‘mean value. Then under the assumption that the noise is symmetric, the 
probability of first kind error (frequency of false positive, i.e. empty v not detected 
empty) may be estimated simply by: 

Prob ( Min {gi, Ll,..., N} > m, ) 1. Prob ( Min {g,, iel’l(v)) > m. ) ( (l/2)n(V) , (3.2) 

whereas the probability of second kind error (frequency of false negative, i.e. non-empty 
voxel v detected empty) depends on the actual but unknown probability law of the gi. This 
provides us with a simple detection scheme with low computational cost. 

This detection method makes use of prior knowledge on the object (non-negativity, 
sparseness) and the noise, and of the assumption on the existence of separating views. 
Moreover, some drawbacks inherent to the EVT are removed since the attenuation value is not 
of interest here, and over-estimation of the region of support is not redhibitory. 
Nevertheless, this technique is still very primary, and fails to detect small vessels since 
it is very sensitive to the noise: when increasing the number of views, small parts of the 
object are more likely to be lost, since low realizations of the noise are more likely to 
occur, whereas, when decreasing the number of views, the separating views assumption becomes 
no more valid for a given object complexity, and structure artifacts may appear between 
differents parts of the object. A better compromise between first and second kind detection 
errors has to be established, and this lead us to consider more sophisticated detection 
schemes. 
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3.2 A more general framework for detection 

Let us now consider, for a given voxel v and in each view i, a “projection window” denoted 
bY PWi, of size K by K (K odd), centered on the geometric projection of the voxel. Let us 
assume that within each window PW, the measured pixels values denoted by gyf”, m,n=l,...,K 
are K* observations of a random variable Pi with mean mi and standard deviation ui. In 
practice, this means that the noise is assumed stationary and white. The detection problem 
may then be formulated as follows: test H,={v is empty] against H,=(v has a non-negative 
density}, given the g?,“, m,n=l,...,K and i=l,...,N. 

In a first step, we consider separately each view i, and we define the following 
hypothesis testing problem: test Ho i={mi=mo} against H, i={mi>mo}, where m, is the noise 
mean value. This is nothing else than a one-sided test on the mean of the random variable Pi. 
Let I& denote the mean estimator for the variable Pi, and Gi2 the variance estimator: 

mi = l/K* m,n=l,.C.,K gYrn 9 (3.3) 

hi* = l/W*-11 m,n=l,. cm ,K ( gyp” - ii )* . (3.4) 

The test may be implemented with the following statistics: 

Zi=(mi-mo)//&i2/K2 , (3.5) 

where gi may be replaced by cri if ai is known. More precisely, under the assumption that the 
m,n g i are independent and that Pi is gaussian, the statistics Zi follows a Student 

distribution with K*-1 degrees of freedom (or a gaussian distribution with standard deviation 
1 if oi is known), centered under Ho, i, whereas under H,, i its non-centrality parameter is: 

Ai = ( mi - m. ) / ( ui / K ) . (3.6) 

The hypothesis Ho i is then rejected at level a on the region defined by {Zi>t9), where the 
threshold t, is chosen such that its probability under H, ., i.e. the first kind error, is 
lower or equal to the desired level u, and the second kind error may be calculated with 
respect to the parameters mi, ui and t,. 

Going back to our detection problem, we remark that, making explicit use of the assumption 
on the existence of separating views, Ho is equivalent to say “there exists at least one view 
i in which Ho i is true” i e H . . is equivalent to the union of the Ho i, i=l,...,N. Having 
defined a region of rejection oaf Ho i at level a by {Zi>ta) for each i=l;...,N, a solution to 
our problem is simply to choose the’following decision rule: 

v is not empty * Z = Min {Zi , i=l,. . . ,N) > t, , (3.7) 

which corresponds to a region of rejection of Ho equal to (Z>t,}= n {Z&J. 
Furthermore, the first kind error which may be estimated by: 

i=l,...,N 

PO ( Z > t, ) < PO ( Min {Zi, ielI( > t, ) = an(“) , (3.8) 

is much smaller than the expression in (3.2) for usual values of the level IX (about 0.1). 

Let us note that this procedure does not result in a global testing of the hypotheses 
V o,i, iA,..., N}, since a voxel is rejected from the region of support (i.e. Ho accepted) 
according to the pixel values in only one view, in fact the “most separating” view. 
Nevertheless, the introduction of projection windows considerably improves the robustness 
with respect to the noise and thus the performances of the detection. Furthermore, the 
testing statistics introduced in (3.5) are normalized, contrary to the EWT used previously, 
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so that they are suited to our detection problem as it was formulated, and that in practice 
the threshold is easier to determine with respect to the tolerated detection errors. 

3.3 Discussion 

The introduction of a more general statistical framework for detecting a region of support 
of the object to be reconstructed provides us with a more versatile tool, which is more 
robust with respect to the uncertainties on the signal. The hypothesis made on the noise 
within the projection windows (stationary, white and gaussian) may seem at first unrealistic, 
but one way to overcome this problem is to implement a preliminary whitening of the data. Let 
us note that the use of a priori knowledge in this framework is of great importance, and has 
been introduced through parameters such as the noise statistics, number and size of 
projection windows and possibly type of neighbourhood used in the preliminary smoothing, and 
through the use of the separating views assumption. 

4. SIMULATION RESULTS 

All the presented simulation results were obtained with a synthetically generated vascular 
tree, with uniform density 1, stored in a 643 volume. This object is rather realistic and 
presents a reasonable complexity, as one may see on the three dimensional view of its surface 
(Figure l.a), and on the two horizontal slices represented in Figures l.c-1.d. A set of 15 
conic projections of size 64* was generated using an interpolation on functions basis, 
corresponding to a circular trajectory of the X-ray source around a vertical axis. Figure 1.b 
shows one of these projections after addition of a centered gaussian noise with standard 
deviation 0.5, corresponding to a SNE equal to 20 dB. 

In Figures 2-3 some results obtained with the EVTs are represented for the two selected 
slices, simultaneously and with the original slices for comparison. One may remark that, even 
in the noiseless case, the standard EVT defined in (2.2) fails to reconstruct concave parts 
of the object (Figure 2.b) and misestimates the density values which leads to mismatching of 
small vessels (Figure 2’.b), and that this method is very sensitive to the noise (Figures 
2.c-2’.c). Nevertheless, after introduction a non-negativity constraint in this technique, 
most of the noise artifacts in the background are removed (Figures 2.d-2’.d). The three 
iterative versions introduced inlo produce also a reduction of the noise artifacts but in a 
much softer way (Figures 3-3’). Moreover, the benefits of the introduction of a non- 
negativity constraint in the third version defined in (2.3), (2.5) seem to be canceled by the 
use of an iterative scheme (Figures 3.d-3’.d). 

The results presented in Figure 4 were obtained using 4 iterations of ART with a non- 
negativity constraint. Although the computation time is much larger with this technique, 
these results are considerably more satisfactory. A good estimation of the object morphology 
is obtained using either noiseless or noisy projections, for concave parts (Figures 4.a-4.c) 
as well as for small parts of the object (Figures 4.b-4.d), and the backprojection artifacts 
are not of great annoyance even in the noisy case (Figures 4.c-4.d). 

The detection scheme (3.1) derived from EVT produces fairly good results, with only 2.7% 
of voxels lost (relative to the number of voxels in the original vascular tree), mainly 
situated in very small vessels, and 3.4% of false alarms (relative to the number of empty 
voxels in the original volume), mainly spread over the volume (Figure 5.a-5.b). When 
increasing the value of the threshold m. from 0. to 1. in order to remove the background 
artifacts, the global relative amount of false alarms lowers down to 0.7X, whereas the 
relative amount of voxels lost is raised up to 18%. One may note that even large vessels then 
present missing voxels (Figure 5.c), and most of the small vessels are totally mismatched 
(Figure 5.d) which is not acceptable. 

The region of support obtained with the detection algorithm based on the Student 
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statistics (3.5), shown in Figures 6.a-6.b, for t,2.575 which corresponds to a theoretical 
level for each view -5X, presents only 2.2% of voxels lost and 4.5% of false alarms, mostly 
distributed around the object, producing an overestimation of its region of support, with a 
background cleared of all the noise artifacts. When increasing the threshold t, up to 10. in 
order to better separate the different vessels of the tree, many small vessels and also parts 
of larger vessels are lost (Figures 6.c-6.d). 

Comparing the frequency distributions of the EVT statistics and the Student statistics on 
the two sets of empty and non-empty voxels (Figures 7-8), one may check that in both cases 
the two distributions overlap, but in Figure 8 the distribution of the Student statistics is 
narrower and higher on the empty voxels, and more spread out on the non-empty voxels, which 
indicates that it better characterizes the noise and signal behaviours. 

Finally, a reduction of the noise artifacts and of the global computational cost (number 
of parameters to be estimated, and number of iterations needed) is observed after restriction 
of the estimation algorithm to the region of support provided by the detection algorithm. As’ 
one may check in Figure 9, the quality of the reconstruction obtained after only 1 iteration 
of constrained ART, using the region of support detected with the EV statistics (Figures 9.a- 
9.b) or the Student statistics (Figures 9.c-9.d) is similar to the one after 4 iterations in 
Figure 4, although some false alarms artifacts are not yet eliminated specially in 9.b. 

5. CONCLUSION 

The comparison of the performances of three-dimensional reconstruction algorithms for a 
vascular tree from few conic projections shows that a regularized solution to this ill-posed 
problem may be obtained by introducing prior information. This is well achieved by the 
procedure we introduced, consisting in a statistical detection step and an estimation step 
based on the Algebraic Reconstruction Technique, as we have shown in our simulation results. 
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Fig. 1: Original object 3-D display (a), 
noisy projection (b), two planes (c-d). 

Fig. 4: Noiseless constrained ART (a-b), 
noisy constrained ART (c-d), 4 iterations. 

Fig. 2: Original (a), noiseless EVT (b), 
noisy EVT (c), noisy constrained EVT (d). 

Fig. 2’: Same as Fig. 2. 

Fig. 3: Original (a), iterative EVT (b), 
with absolute value (c), and threshold (d). 

Fig. 3’: Same as Fig. 3. 

         404



Fig. 5: Region of support detected by EVT, 
q=O. (a-b), and m0=1. (c-d). 

6: Region of support detecte 
E, tc2.575 (a-b), and to=lO. (c-d). 

(black= true neg., white= true pos., light grey= false pos., dark grey= false neg.) 
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Fig. 8: Same as Fig. 7 for Student. 
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Fig. 9: ART with region of support detected 
by EVT (a-b) or Student (c-d), 1 iteration. 
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